Eg you separated the bones from the brain in your example. If you didn't have bones, you wouldn't have blood. Bones make your blood. If you didn't have blood, your brain wouldn't get oxygen. You can't separate these systems, they are all beautifully connected.
You can lose a lot of body parts and still maintain your sense of self (in fact, you’re constantly losing hair and skin cells without even noticing it), but taking drugs that change your brain chemistry the right way predictably leads to ego death.
I don’t know that I’m convinced, but that feels like a strong argument to me. I’m having trouble putting into words what I actually believe about the residence of the self, but I hope this is clear.
I think the self is a quorum of mind and body. It’s not specifically in a bodily location, but it exists as long as enough of the brain and body are functioning and together. If some parts are missing, it’s slightly different, but it’s still legitimately the self. When there isn’t a quorum, there’s still the potential for a sense of self, but it will be different.
If I lose a finger (due to infection or something non-traumatizing in itself), it would probably suck immensely, but not change my personality to the degree that people who know me would think of me as a different person before and after. If I lost part of my tongue, it might (I’m a passionate linguist; for an equally passionate violinist, it might be a different story). If I lost both legs and a hand, I think I would go through some immense personality changes that would make those who know me think I was a different person before.
You aren't just your brain. The brain is just the central hub for generating conscious thought. Gathering input from all over your body, but not all.
The body has a lot of other generators doing different things. Such as the lower tract of the spinal chord having a gait generator. Or different reflexes for different purposes.
It isn't just your consciousness that uses your vision. As much as the brain is a collector, it is also a sharer of information. Heck. There are different circuits that control your eyes too. One is just you choosing to move your eyes. A rigid movement. The other is to track an object witb smooth precision. If you focus on one spot, and move your eyes slightly to the side, you can make these two tracks fight over your eyes. Causing your eyes to tremble very quickly!
It’s always strange to me how the body prefers 72 to 75 degrees F on the outside but 98 F on the inside. Anything approaching equalizing of interior with exterior temperature results in heat-related illness.
We basically run on tiny combustion engines. Exothermic reactions.
We aren't a passive 98 degrees, we would be hotter if it wasn't cool enough outside. Higher heat would cause different cellular structures to become misshapen, leading to system breakdown. I'd be like trying to run a cpu cooling loop with boiling water.
And I'd add to that that if our thermal dissipation is overwhelmed, our internal heat build up. To do that heat dissipation, we need to have an environment that suck out more heat out of us than what we produce. If the environment is too hot, the heat build up and as Deadrek says, our internal inner workings beak down.
That why we sweat. Water suck out a lot more heat than air, because it wants to saturate the ambiante air, and to do that it suck up our body heat to become steam. Rince and repeat (literally).
But once the air is to humid, it gets more and more difficult for our sweat to evaporate, which makes it ineffective. That why we can kinda survive in a 90°C + sauna (albeit not for long, but for a different reason), but not in a 37°C (98°F) 100% humidity place like some tropical rainforest. At least, not without specialized acclimatation and survival techniques.
Yeah, but my point was that its a fundamentally different kind of heat transfer.
Its the difference between how an oven cools itself and how a power plant cools its self. With an oven, you vent the hot gas that is created through elsewhere, moving the gas and the heat away from its source. That gas (fluid) isn't re-used. In a radiator, the fluid is re-used in the cooling loop.
A car or a power plant or the human ears are that second example. We're heating a fluid (blood, radiator fluid, water, etc), to transfer heat to secondary fluid (air, more water, etc..). With a power plant, you have fluids in a circuit, transferring heat from one to the other. The primary cooling fluid doesn't leave the circuit.
In the first example, we're ejecting the hot gasses directly, and not re-using them as a fluid. This is more like a car exaust, or an oven, or human breathing.
Its in-out cooling versus around-and-around cooling. Humans (afaik) are primarily cooled through in-out cooling. We do radiative heat transfer and have organs adapted for that specifically, but its a very small amount of heat transfer compared to what we get from in-out cooling.
A car also has both radiative and in-out cooling. But it gets far more of its cooling from its radiator than it does through ejecting hot gasses.
Human cooling is mostly us throwing away hot gas, and we don't reuse it. We get some cooling through our blood, but less than what we get through breathing.
I mean, thats kind of like arguing that the exhaust is the cooling system for the car, which, undoubtedly much heat is lost through the exhaust. But that isn't the princpal way it loses heat; the radiator is, and the radiator is much more akin to say, our ears, which are external, and the fluid moves through (rather than being ejected).
Radiation (similar to heat leaving a wood stove). This normal process of heat moving away from the body usually occurs in air temperatures lower than 20 °C (68 °F). The body loses 65% of its heat through radiation.
plants produce a literally electrical voltage across cell membrane when collecting sunlight. The solar panel is very much a technological copy of plant leaves.
biology can be incredibly efficient sometimes. storing information in DNA takes just about 40-50 atoms per bit, and DNA is about 2.5 nm in diameter. For comparison, the finest structures in modern computers are 3-5 nm in size.
since powering the whole thing is incredibly important, animals have one specialized cell (mitochondria) inside every normal cell, simply for the purpose to convert the energy from sugar into a usable form. Plants have two of these specialized cells, with the other one's job being simply to collect sunlight and turn it into usable energy. That, in my opinion, makes them more advanced than animals. ;-)